Predicting loss reserves using quantile regression Running title: Quantile regression loss reserve models

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXTREMAL QUANTILE REGRESSION 3 quantile regression

Quantile regression is an important tool for estimation of conditional quantiles of a response Y given a vector of covariates X. It can be used to measure the effect of covariates not only in the center of a distribution, but also in the upper and lower tails. This paper develops a theory of quantile regression in the tails. Specifically , it obtains the large sample properties of extremal (ext...

متن کامل

Probabilistic Solar Forecasting Using Quantile Regression Models

In this work, we assess the performance of three probabilistic models for intra-day solar forecasting. More precisely, a linear quantile regression method is used to build three models for generating 1 h–6 h-ahead probabilistic forecasts. Our approach is applied to forecasting solar irradiance at a site experiencing highly variable sky conditions using the historical ground observations of sola...

متن کامل

Quantile Regression for Mixed Models

Cardiometabolic diseases have substantially increased in China in the past 20 years and blood pressure is a primary modifiable risk factor. Using data from the China Health and Nutrition Survey we examine blood pressure trends in China from 1991 to 2009, with a concentration on age cohorts and urbanicity. Very large values of blood pressure are of interest, so we model the conditional quantile ...

متن کامل

Additive Models for Quantile Regression

We describe some recent development of nonparametric methods for estimating conditional quantile functions using additive models with total variation roughness penalties. We focus attention primarily on selection of smoothing parameters and on the con

متن کامل

Quantile Regression

The purpose of regression analysis is to expose the relationship between a response variable and predictor variables. In real applications, the response variable cannot be predicted exactly from the predictor variables. Instead, the response for a fixed value of each predictor variable is a random variable. For this reason, we often summarize the behavior of the response for fixed values of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Data Science

سال: 2021

ISSN: 1680-743X,1683-8602

DOI: 10.6339/jds.201501_13(1).0008